
Basics of scattering: 
 
In the Born approximation (that is in systems where the scattering cross-section is small 
and effects such as attenuation with thickness and multiple scattering do not need to be 
considered) we can describe the neutron or x-ray scattering process for any arbitrary 
system by 
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A is the scattering amplitude (just like the amplitude of any wave), and bc is the coherent 
scattering length density which tells us how strongly the material scatters.  For neutrons 
bc is given in units of Å-2 (typically on the order of 1-10 x 10^-6 Å2), while for x-rays it 
is given by f and f’(in units of the electron radius, ro = 2.52 x 10-5 Å) times the material 
density in Å-3, the latter being imaginary (i.e. absorbing). bc can also have an imaginary 
component, but for the neutrons energies we will be working with it this imaginary term 
is negligible.  Q is the scattering wave vector whose direction is determined by the 
subtraction of the incoming wave direction from the scattered wave (Figure 1), and 
whose magnitude is 2π/λ with λ = wavelength.  (We will discuss where the more about Q 
shortly.)  Rj is the relative position in space of the jth scatterer with respect to all the 
other scattering centers.  We don’t need to know the actual location in space of R relative 
to the incoming wavefront since we loose this phase information when we square A to 
get the measured intensity, I.  Finally, you will notice that an exponent of an imaginary 
number can be written in wave-compatible terms of sines and cosines. 
 

 
 
To understand how these equations work, especially Q, let’s examine two common 
scattering geometries.  It is often easiest to think of scattering in terms of constructive and 
destructive interference between two waves depending on their relative phases (i.e. if the 



phase difference is zero or any integer multiple of 2π then their amplitudes add and 
I_total = 4I_single, but if the phase difference is multiples of π apart then the waves are 
out of phase and we record zero intensity).  In truth if is actually the neutron (or x-ray) 
wave-function that interferes with itself (as in the 2-slit experiment) that gives rise to the 
observed pattern, but the mathematics is the same so it’s easier to picture the situation as 
arising from the interference of classical, discreet waves.  
 
I.  Transmission through a thin slab   
 
The path length difference is Δ = d sin(θ), which at maximum constructive interference  = 

nλ, can be rewritten as ( )
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originates from a structure with a periodic spacing of d, or a Q of
d
π2 . 

 
Now let’s approach this same situation using the conventional reciprocal space notation – 
that is in terms of Q from the start. Using vector notation,  
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Since we care only about the relative positions our scatterers let’s write define one of the 
scatterers to be located at the origin: 
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θ , the same conclusion we reached using basic geometry.  A 

plot of this 2-particle scattering as a function of Qy is shown in Figure 3. 
 
The beauty of using reciprocal space (Q-notation) is that can be used easily for much 
more complicated 3-D scattering distributions and for multiple particles all scattering and 
interfering with one another simultaneously.  Try adding a third particle at (0,2d) or even 
one at an arbitrary (x,y) and you’ll see how much easier working in reciprocal space 
becomes! 
 
II.  Specular reflectivity 
 



Reflectivity in general means reflecting off of a smooth surface, such as off your typical 
silver-coated mirror.  Specular reflectivity is a special case where the incident and 
scattered angles are the same, Figure 4.   
 
 
 
Here I have rotated the axes since the reflectivity community typically uses z to denote 
the direction perpendicular to the sample plane.  From geometry you can deduce that 
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=ZQ .  Since we can only observe the 

component of the difference in scattering position for which there is a non-zero Q-
component, a key feature of specular reflectivity is that in this geometry we are only 
sensitive to the depth-dependence, but not any in-plane structures.  Using reciprocal 
space we can calculate the scattering from two particles as 
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this system is given in Figure 5, and doubles in frequency from the transmission case for 
the same spacing, d.  Scattering for a crystal of .. Figure 6.  (In reality for real samples 
with many scattering centers when you go to very low angles (very small Q) the Born 
approximation no longer holds and multiple scattering must be accounted for, but we will 
deal with this in the next section.) 
 
III.  Off-specular (or diffuse) reflectivity 
 
Your research project does not go into this, but you will be involved in taking data for 
such a system (nanoparticles monolayer) so you might as well see what it is.  Sometimes 
you … 
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not considered since we have no detector resolution in this direction.  You will note that 
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it is much easier to reach high values of Qx than Qz.  Figure 7 shows a representative 
data set for patterned ellipses with a periodic spacing of 9000 Å. 
 
 

 
 

 



 
 

 


